准确、全面、易读、丰富的网络百科全书
你好!请登录

有谱百科
助您轻松探秘世界,学习知识。

登录
制动系统

制动系统

强制制动的一系列专门装置

使汽车的行驶速度可以强制降低的一系列专门装置。制动系统主要由供能装置、控制装置、传动装置和制动器4部分组成。制动系统的主要功用是使行驶中的汽车减速甚至停车、使下坡行驶的汽车速度保持稳定、使已停驶的汽车保持不动。已经普遍应用的液压制动现在已经是非常成熟的技术,随着人们对制动性能要求的提高,防抱死制动系统、驱动防滑控制系统、电子稳定性控制程序、主动避撞技术等功能逐渐融人到制动系统当中,需要在制动系统上添加很多附加装置来实现这些功能,这就使得制动系统结构复杂化,增加了液压回路泄漏的可能以及装配、维修的难度,制动系统要求结构更加简洁,功能更加全面和可靠,制动系统的管理也成为必须要面对的问题,电子技术的应用是大势所趋。

中文名

制动系统

作用

保证车辆可靠停放等

按能源分类

人力制动系、动力制动系

按功用分类

行车制动系、驻车制动系

功用

制动系统

·为了保证汽车安全行驶,提高汽车的平均行驶车速,以提高运输生产率,在各种汽车上都设有专用制动机构。这样的一系列专门装置即称为制动系统。

·汽车制动系统功用

1)保证汽车行驶中能按驾驶员要求减速停车

2)保证车辆可靠停放

3 保障汽车和驾驶人的安全

类型

制动系统

1.按功用分:行车制动系驻车制动系辅助制动系

1)行车制动系——是由驾驶员用脚来操纵的,故又称脚制动系。它的功用是使正在行驶中的汽车减速或在最短的距离内停车。

2)驻车制动系——是由驾驶员用手来操纵的,故又称手制动系。它的功用是使已经停在各种路面上的汽车驻留原地不动

3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系也是汽车必须具备的。

4)辅助制动系——经常在山区行驶的汽车以及某些特殊用途的汽车,为了提高行车的安全性和减轻行车制动系性能的衰退及制动器的磨损,用以在下坡时稳定车速。

2.按制动能量传输分:机械式、液压式、气压式、电磁式、组合式。

3.按回路多少分:单回路制动系、双回路制动系。

4.按能源分:人力制动系、动力制动系、伺服制动系。

1)人力制动系——以驾驶员的肌体作为唯一的制动能源的制动系。

2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。

3)伺服制动系——兼用人力和发动机动力进行制动的制动系。

按制动系统分类

制动系统

制动系统可分为。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。

按制动操纵能源分

制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。

按制动能量分类

制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。

组成

制动系统

1.供能装置:包括供给、调节制动所需能量以及改善传动介质状态的各种部件

2.控制装置:产生制动动作和控制制动效果各种部件,如制动踏板

3.传动装置:包括将制动能量传输到制动器的各个部件如制动主缸、轮缸

4.制动器:产生阻碍车辆运动或运动趋势的部件

制动系统一般由制动操纵机构和制动器两个主要部分组成。

制动操纵机构

产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,如图中的2、3、4、6,以及制动轮缸和制动管路。

制动器

产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。

原理

一般制动基本结构

·主要由车轮制动器和液压传动、气压传动机构组成。

·车轮制动器主要由旋转部分、固定部分和调整机构组成,旋转部分是制动鼓;固定部分包括制动蹄和制动底板;调整机构由偏心支承销和调整凸轮组成用于调整蹄鼓间隙。

·液压制动传动机构主要由制动踏板、推杆、制动主缸、制动轮缸和管路组成。

·气压制动传动机构主要由制动踏板、推杆、制动总阀、空气干燥器、四回路保护阀、制动气室和管路等组成。

制动工作原理

制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。

1)制动系不工作时

·蹄鼓间有间隙,车轮和制动鼓可自由旋转

2)制动时

·要汽车减速,脚踏下制动器踏板通过推杆和主缸,使主缸油液在一定压力下流入轮缸,并通过两轮缸活塞推使制动蹄绕支承销转动,上端向两边分开而以其摩擦片压紧在制动鼓的内圆面上。不转的制动蹄对旋转制动鼓产生摩擦力矩,从而产生制动力

3)解除制动

·当放开制动踏板时回位即将制动蹄拉回原位,制动力消失。

制动主缸的结构

制动系统

·制动主缸的作用是将自外界输入的机械能转换成液压能,从而液压能通过管路再输给制动轮缸

·制动主缸分单腔和双腔式两种,分别用于单、双回路液压制动系。

1.单腔式制动主缸

1)制动系不工作时

·不制动时,主缸活塞位于补偿孔、回油孔之间

2)制动时·活塞左移,油压升高,进而车轮制动

3)解除制动

·撤除踏板力,回位弹簧作用,活塞回位,油液回流,制动解除

2.双腔式制动主缸

1)结构(如一汽奥迪100型轿车双回路液压制动系统中的串联式双腔制动主缸)

·主缸有两腔

·第一腔与右前、左后制动器相连;第二腔与左前、右后制动器相通

·每套管路和工作腔又分别通过补偿孔和回油孔与储油罐相通。第二活塞由右端弹簧保持在正确的初始位置,使补偿孔和进油孔与缸内相通。第一活塞在左端弹簧作用下,压靠在套上,使其处于补偿孔和回油孔之间的位置。

2)工作原理

·制动时,第一活塞左移,油压升高,克服弹力将制动液送入右前左后制动回路;同时又推动第二活塞,使第二腔液压升高,进而两轮制动

·解除制动时,活塞在弹簧作用下回位,液压油自轮缸和管路中流回制动主缸。如活塞回位迅速,工作腔内容积也迅速扩大,使油压迅速降低。储液罐里的油液可经进油孔和活塞上面的小孔推开密封圈流入工作腔。当活塞完全回位时,补偿孔打开,工作腔内多余的油由补偿孔流回储液罐。若液压系统由于漏油,以及由于温度变化引起主缸工作腔、管路、轮缸中油液的膨胀或收缩,都可以通过补偿孔进行调节。

制动轮缸的结构

·制动轮缸的功用:是将液力转变为机械推力。有单活塞和双活塞两种。

1)结构

·奥迪100的双活塞式轮缸体内有两活塞,两皮碗,弹簧使皮碗、活塞、制动蹄紧密接触。

2)工作过程

·制动时,液压油进入两活塞间油腔,进而推动制动蹄张开,实现制动。

·轮缸缸体上有放气螺栓,以保证制动灵敏可靠。

要求

·为了保证汽车行使安全,发挥高速行使的能力,制动系必须满足下列要求

1.制动效能好。评价汽车制动效能的指标有:制动距离、制动减速度、制动时间

2.操纵轻便,制动时的方向稳定性好。制动时,前后车轮制动力分配合理,左右车轮上的制动力应基本相等,以免汽车制动时发生跑偏和侧滑。

3.制动平顺性好。制动时应柔和、平稳;解除时应迅速、彻底。

4.散热性好,调整方便。这要求制动蹄摩擦片抗高温能力强,潮湿后恢复能力快,磨损后间隙能够调整,并能够防尘、防油。

5.带挂车时,能使挂车先于主车产生制动,后于主车解除制动;挂车自行脱挂时能自行进行制动。

维修保养

保证车辆性能良好

制动性能良好的汽车,要求在任何速度下行驶时,通过制动措施,能在很短的时间和距离内,及时迅速地降低车速或停车。良好的制动效能对于提高汽车平均速度和保证行车安全有着重要作用。提高制动效能的主要措施有:⑴缩短制动距离:

制动器在使用过程中,由于制动蹄摩擦片和制动鼓的磨损,制动器间隙将逐渐变大。制动系反应时间增加,将引起制动迟缓及制动力不足,使制动距离延长,制动效能降低。

制动时,制动器产生的摩擦力大小,在很大程度上还取决于制动蹄片与制动鼓接触面积的多少,接触面积增加,制动力增长时间快,制动效能就提高,制动距离也就相应缩短。在正常情况下,当产生较大摩擦力时,制动蹄片与制动鼓的接触面积应达到80%以上。使用中,由于制动器的磨损而使间隙增大后,必须进行检查调整。

⑵防止制动跑偏:

制动时,汽车自动偏离原行驶方向,这种现象叫制动跑偏。一旦制动跑偏很容易造成撞车、掉下路沟甚至翻车等严重事故。为提高制动的稳定性,保证行车安全,在紧急制动时,不允许汽车有明显的跑偏现象。

制动跑偏的原因,主要是前轮左右车轮制动力不等,制动时就形成绕重心的旋转力矩,使汽车有发生转动的趋势,因而易出现制动跑偏现象。为了避免跑偏,在使用中,应注意使左右车轮制动器间隙、制动蹄回位弹簧拉力应保持一致。

在更换摩擦片时,应选用同一型号和批次产品,加工精度和接触面应符合要求。并防止摩擦片出现硬化层,沾有油污,制动鼓失圆或有沟槽等。

怎样防止汽车侧滑

⑴制动时汽车的侧滑:汽车在行驶中,常因制动、转向或其它原因,引起汽车偏离原定的行驶方向,造成侧向滑移,甚至翻车。特别在紧急制动或急转向时,汽车侧滑、翻车更为严重。

汽车制动时侧滑,常出现前轮侧滑和后轮侧滑两种现象。若前轮先抱死,就容易前轮侧滑,偏离行驶方向,同时失去操纵性,但由于侧滑后能有自动恢复直线行驶的趋势,偏离行驶方向角度较小,汽车处于稳定状态。若后轮先抱死,就容易引起后轮侧滑,侧滑后能自动增大偏离行驶方向的角度,加速侧滑的趋势,汽车处于不稳定状态。制动侧滑是很危险的,特别是后轮侧滑,容易引起翻车伤人。

①在使用中,应尽量避免侧滑现象。保持制动器技术状况良好,使前后轮均有可靠的制动效能。

②在路状复杂、视线不良的路段,应控制车速,以减少紧急制动,避免引起侧滑甚至翻车事故,特别在泥泞、雨天的渣油路面行驶时,更需加倍小心驾驶。但由于负载和附着情况变化的影响,很难避免汽车侧滑。当汽车后轮出现侧滑时,应及时朝后轮侧滑的一边方向适当转动方向盘,以消除离心力的影响,侧滑即可停止。

③现代汽车制动系中,有的加设一种防抱死装置,制动时,将滑动率控制在10%-30%的范围内,能得到最大的附着系数,使车轮处于半抱死半滚动状态,充分利用附着力,获得理想的制动效果。试验证明,装有自动防抱死装置的汽车,在制动时,不仅有良好的防侧滑能力和转向性能,同时缩短了制动距离,减少了轮胎磨损,有利于行车安全。

⑵转向时汽车的侧滑:

汽车在转向时,侧滑现象时有发生,一般常把汽车抵抗侧滑和翻车的能力,称为转向稳定性。为提高汽车的转向稳定性,必须懂得汽车转向时影响侧滑和翻的因素,以及相互之间的关系。从而根据行驶条件,采取有效措施,保证行车安全。

当汽车转向时,汽车有向外甩的力叫离心力。它的大小与汽车重量、转向时车速、转向半径等因素有关。汽车在平路上转向时,引起侧滑的主要是离心力,如离心力达到附着力时,车轮即开始向外滑动。所以侧滑的条件是:离心力等于附着力。

汽车转向时的侧滑和翻车主要是由离心力引起的。因此,在转向时尽量减小离心力是保证行车安全的首要因素。在转向时,必须根据道路情况,及时降低车速,用低速档通过。同时,转动方向盘不能过猛,因为转向轮的回转角度加大,就增加了侧滑和翻车的可能性。特别是急转弯路、视线不良、路面潮湿和重车的情况下,更要谨慎驾驶,以防发生事故。

在急转弯时,应提前降低车速,单纯的依靠制动,用边降速边转向的办法是很危险的,因为在这种情况下除了离心力外还有制动力,两者的合力就容易达到附着力,因而引起侧滑。

另外,要合理装载,既要掌握装载高度,又要装载平稳、均匀,捆扎牢固,避免偏于一侧。因为汽车装载越高其重心也高,在附着系数较大的道路或凹凸不平的道路上转向时,翻车的可能性就会增加。

汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。

对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。

制动系统概述

可分为如下几类

⑴ 按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。

⑵ 制动操纵能源制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。

⑶ 按制动能量的传输方式 制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。

一般工作原理

制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。

可用右图所示的一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。

当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。

轿车典型的组成

右图给出了一种轿车典型制动系统的组成示意图,可以看出,制动系统一般由制动操纵机构和制动器两个主要部分组成。

⑴ 制动操纵机构 产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,如图中的2、3、4、6,以及制动轮缸和制动管路。

制动器类型

鼓式制动器

概述

一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。目前汽车所用的摩擦制动器可分为鼓式和盘式两大类。

旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器。旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器。

领从蹄式制动器

增势与减势作用 右图为领从蹄式制动器示意图,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)如图中箭头所示。沿箭头方向看去,制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄2的支承点4在后端,促动力加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。具有这种属性的制动蹄称为从蹄。当汽车倒驶,即制动鼓反向旋转时,蹄1变成从蹄,而蹄2则变成领蹄。这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。

在领从式制动器中,两制动蹄对制动鼓作用力N1’和N2’的大小是不相等的,因此在制动过程中对制动鼓产生一个附加的径向力。凡制动鼓所受来自二蹄的法向力不能互相平衡的制动器称为非平衡式制动器。

单向双领蹄式制动器

在制动鼓正向旋转时,两蹄均为领蹄的制动器称为双领蹄式制动器,其结构示意图如右图所示。

双领蹄式制动器与领从蹄式制动器在结构上主要有两点不相同,一是双领蹄式制动器的两制动蹄各用一个单活塞式轮缸,而领从蹄式制动器的两蹄共用一个双活塞式轮缸;二是双领蹄式制动器的两套制动蹄、制动轮缸、支承销在制动底板上的布置是中心对称的,而领从蹄式制动器中的制动蹄、制动轮缸、支承销在制动底板上的布置是轴对称布置的。

双向双领蹄式制动器

无论是前进制动还是倒车制动,两制动蹄都是领蹄的制动器称为双向双领蹄式制动器,图5-42是其结构示意图器。与领从蹄式制动器相比,双向双领蹄式制动器在结构上有三个特点,一是采用两个双活塞式制动轮缸;二是两制动蹄的两端都采用浮式支承,且支点的周向位置也是浮动的;三是制动底板上的所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是成对的,而且既按轴对称、又按中心对称布置。

倒车制动时,摩擦力矩的方向相反,使两制动蹄绕车轮中心O逆箭头方向转过一个角度,将可调支座10连同调整螺母9一起推回原位,于是两个支座10便成为蹄的新支承点。这样,每个制动蹄的支点和促动力作用点的位置都与前进制动时相反,其制动效能同前进制动时完全一样。

双从蹄式制动器

前进制动时两制动蹄均为从蹄的制动器称为双从蹄式制动器,其结构示意图见图5-44。这种制动器与双领蹄式制动器结构很相似,二者的差异只在于固定元件与旋转元件的相对运动方向不同。虽然双从蹄式制动器的前进制动效能低于双领蹄式和领从蹄式制动器,但其效能对摩擦系数变化的敏感程度较小,即具有良好的制动效能稳定性。

双领蹄、双向双领蹄、双从蹄式制动器的固定元件布置都是中心对称的。如果间隙调整正确,则其制动鼓所受两蹄施加的两个法向合力能互相平衡,不会对轮毂轴承造成附加径向载荷。因此,这三种制动器都属于平衡式制动器。

单向自增力式制动器

汽车前进制动时,单活塞式轮缸将促动力FS1加于第一蹄,使其上压靠到制动鼓3上。第一蹄是领蹄,并且在各力作用下处于平衡状态。顶杆6是浮动的,将与力S1大小相等、方向相反的促动力FS2施于第二蹄。故第二蹄也是领蹄。作用在第一蹄上的促动力和摩擦力通过顶杆传到第二蹄上,形成第二蹄促动力FS2。对制动蹄1进行受力分析可知,FS2>FS1。此外,力FS2对第二蹄支承点的力臂也大于力FS1对第一蹄支承的力臂。因此,第二蹄的制动力矩必然大于第一蹄的制动力矩。倒车制动时,第一蹄的制动效能比一般领蹄的低得多,第二蹄则因未受促动力而不起制动作用。

双向自增力式制动器

双向自增力式制动器的结构原理如图5-47所示。其特点是制动鼓正向和反向旋转时均能借蹄鼓间的摩擦起自增力作用。它的结构不同于单向自增力式之处主要是采用双活塞式制动轮缸4,可向两蹄同时施加相等的促动力FS。制动鼓正向(如箭头所示)旋转时,前制动蹄1为第一蹄,后制动蹄3为第二蹄;制动鼓反向旋转时则情况相反。由图可见,在制动时,第一蹄只受一个促动力FS而第二蹄则有两个促动力FS和S,且S>FS。考虑到汽车前进制动的机会远多于倒车制动,且前进制动时制动器工作负荷也远大于倒车制动,故后蹄3的摩擦片面积做得较大。

凸轮式制动器

目前,所有国产汽车及部分外国汽车的气压制动系统中,都采用凸轮促动的车轮制动器,而且大多设计成领从蹄式。制动时,制动调整臂在制动气室6的推杆作用下,带动凸轮轴转动,使得两制动蹄压靠到制动鼓上而制动。由于凸轮轮廓的中心对称性及两蹄结构和安装的轴对称性,凸轮转动所引起的两蹄上相应点的位移必然相等。这种由轴线固定的凸轮促动的领从蹄式制动器是一种等位移式制动器,制动鼓对制动蹄的摩擦使得领蹄端部力图离开制动凸轮,从蹄端部更加靠紧凸轮。因此,尽管领蹄有助势作用,从蹄有减势作用,但对等位移式制动器而言,正是这一差别使得制动效能高的领蹄的促动力小于制动效能低的从蹄的促动力,从而使得两蹄的制动力矩相等。

楔式制动器

楔式制动器中两蹄的布置可以是领从蹄式。作为制动蹄促动件的制动楔本身的促动装置可以是机械式、液压式或气压式。

两制动蹄端部的圆弧面分别浮支在柱塞3和柱塞6的外端面直槽底面上。柱塞3和6的内端面都是斜面,与支于隔架5两边槽内的滚轮4接触。制动时,轮缸活塞15在液压作用下推使制动楔13向内移动。后者又使二滚轮一面沿柱塞斜面向内滚动,一面推使二柱塞3和6在制动底板7的孔中外移一定距离,从而使制动蹄压靠到制动鼓上。轮缸液压一旦撤除,这一系列零件即在制动蹄回位弹簧的作用下各自回位。导向销1和10用以防止两柱塞转动。

鼓式制动器小结

以上介绍的各种鼓式制动器各有利弊。就制动效能而言,在基本结构参数和轮缸工作压力相同的条件下,自增力式制动器由于对摩擦助势作用利用得最为充分而居首位,以下依次为双领蹄式、领从蹄式、双从蹄式。但蹄鼓之间的摩擦系数本身是一个不稳定的因素,随制动鼓和摩擦片的材料、温度和表面状况(如是否沾水、沾油,是否有烧结现象等)的不同可在很大范围内变化。自增力式制动器的效能对摩擦系数的依赖性最大,因而其效能的热稳定性最差。

在制动过程中,自增力式制动器制动力矩的增长在某些情况下显得过于急速。双向自增力式制动器多用于轿车后轮,原因之一是便于兼充驻车制动器。单向自增力式制动器只用于中、轻型汽车的前轮,因倒车制动时对前轮制动器效能的要求不高。双从蹄式制动器的制动效能虽然最低,但却具有最良好的效能稳定性,因而还是有少数华贵轿车为保证制动可靠性而采用(例如英国女王牌轿车)。领从蹄制动器发展较早,其效能及效能稳定性均居于中游,且有结构较简单等优点,故目前仍相当广泛地用于各种汽车。

盘式制动器

概述

盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。其固定元件则有着多种结构型式,大体上可分为两类。一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2~4个。这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。这种由制动盘和制动钳组成的制动器称为钳盘式制动器。另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全部工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。钳盘式制动器过去只用作中央制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。这里只介绍钳盘式制动器。钳盘式制动器又可分为定钳盘式和浮钳盘式两类。

定钳盘式制动器

定钳盘式制动器的结构示意图见右图。跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞2分别位于制动盘1的两侧。制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。

这种制动器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮辋内;热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必须加装一个机械促动的驻车制动钳。

浮钳盘式制动器

制动钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。

与定钳盘式制动器相反,浮钳盘式制动器轴向和径向尺寸较小,而且制动液受热汽化的机会较少。此外,浮钳盘式制动器在兼充行车和驻车制动器的情况下,只须在行车制动钳油缸附近加装一些用以推动油缸活塞的驻车制动机械传动零件即可。故自70年代以来,浮钳盘式制动器逐渐取代了定钳盘式制动器。

盘式制动器的特点

盘式制动器与鼓式制动器相比,有以下优点:一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳定;浸水后效能降低较少,而且只须经一两次制动即可恢复正常;在输出制动力矩相同的情况下,尺寸和质量一般较小;制动盘沿厚度方向的热膨胀量极小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大;较容易实现间隙自动调整,其他保养修理作业也较简便。对于钳盘式制动器而言,因为制动盘外露,还有散热良好的优点。盘式制动器不足之处是效能较低,故用于液压制动系统时所需制动促动管路压力较高,一般要用伺服装置。

目前,盘式制动器已广泛应用于轿车,但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向稳定性。在货车上,盘式制动器也有采用,但离普及还有相当距离。

驻车制动

按在汽车上安装位置的不同,驻车制动装置分中央驻车制动装置和车轮驻车制动装置两类。前者的制动器安装在传动轴上,称为中央制动器;后者和行车制动装置共用一套制动器,结构简单紧凑,已在轿车上得到普遍应用。

右图为一盘鼓组合式制动器。这种制动器将一个作行车制动器的盘式制动器和一个作驻车制动器的鼓式制动器组合在一起。双作用制动盘2的外缘盘作盘式制动器的制动盘,中间的鼓部作鼓式制动器的制动鼓。

进行驻车制动时,将驾驶室中的手动驻车制动操纵杆拉到制动位置,经一些列杠杆和拉绳传动,将驻车制动杠杆的下端向前拉,使之绕平头销转动,其中间支点推动制动推杆左移,将前制动蹄推向制动鼓。待前制动蹄压靠到制动鼓上之后,推杆停止移动,此时制动杠杆绕中间支点继续转动。于是制动杠杆的上端向右移动,使后制动蹄压靠到制动鼓上,施以驻车制动。

解除制动时,将驻车制动操纵杆推回到不制动的位置,制动杠杆在卷绕在拉绳回位弹簧的作用下回位,同时制动蹄回位弹簧将两制动蹄拉拢。

间隙自调

制动蹄在不工作的原始位置时,其摩擦片与制动鼓间应有合适的间隙,其设定值由汽车制造厂规定,一般在0.25~0.5mm之间。任何制动器摩擦副中的这一间隙(以下简称制动器间隙)如果过小,就不易保证彻底解除制动,造成摩擦副拖磨;过大又将使制动踏板行程太长,以致驾驶员操作不便,也会推迟制动器开始起作用的时刻。但在制动器工作过程中,摩擦片的不断磨损将导致制动器间隙逐渐增大。情况严重时,即使将制动踏板踩到下极限位置,也产生不了足够的制动力矩。目前,大多数轿车都装有制动器间隙自调装置,也有一些载货汽车仍采用手工调节。

制动器间隙调整是汽车保养和修理中的重要项目,按工作过程不同,可分为一次调准式和阶跃式两种。

右图是一种设在制动轮缸内的摩擦限位式间隙自调装置。用以限定不制动时制动蹄的内极限位置的限位摩擦环2,装在轮缸活塞3内端的环槽中,活塞上的环槽或螺旋槽的宽度大于限位摩擦环厚度。活塞相对于摩擦环的最大轴向位移量即为二者之间的间隙。间隙应等于在制动器间隙为设定的标准值时施行完全制动所需的轮缸活塞行程。

制动时,轮缸活塞外移,若制动器间隙由于各种原因增大到超过设定值,则活塞外移到0时,仍不能实现完全制动,但只要轮缸将活塞连同摩擦环继续推出,直到实现完全制动。这样,在解除制动时,制动蹄只能回复到活塞与处于新位置的限位摩擦环接触为止,即制动器间隙为设定值。

传动装置

目前,轿车上的制动传动装置有机械式和液压式两种。

机械制动传动装置

一般,驻车制动系统的机械传动装置组成如右图所示。驻车制动系统与行车制动系统共用后轮制动器7。施行驻车制动时,驾驶员将驻车制动操纵杆1向上扳起,通过平衡杠杆2将驻车制动操纵缆绳3拉紧,促动两后轮制动器。由于棘爪的单向作用,棘爪与棘爪齿板啮合后,操纵杆不能反转,驻车制动杆系能可靠地被锁定在制动位置。欲解除制动,须先将操纵杆扳起少许,再压下操纵杆端头的压杆按钮8,通过棘爪压杆使棘爪离开棘爪齿板。然后将操纵杆向下推到解除制动位置。使棘爪得以将整个驻车机械制动杆系锁止在解除制动位置。驻车制动系统必须可靠地保证汽车在原地停驻,这一点只有用机械锁止方法才能实现,因此驻车制动系统多用机械式传动装置。

液压传动装置

目前,轿车的行车制动系统都采用了液压传动装置,主要由制动主缸(制动总泵)、液压管路、后轮鼓式制动器中的制动轮缸(制动分泵)、前轮钳盘式制动器中的液压缸等组成,见右图。主缸与轮缸间的连接油管除用金属管(铜管)外,还采用特制的橡胶制动软管。各液压元件之间及各段油管之间还有各种管接头。制动前,液压系统中充满专门配制的制动液。

踩下制动踏板4,制动主缸5将制动液压入制动轮缸6和制动钳2,将制动块推向制动鼓和制动盘。在制动器间隙消失并开始产生制动力矩时,液压与踏板力方能继续增长直到完全制动。此过程中,由于在液压作用下,油管的弹性膨胀变形和摩擦元件的弹性压缩变形,踏板和轮缸活塞都可以继续移动一段距离。放开踏板,制动蹄和轮缸活塞在回位弹簧作用下回位,将制动液压回主缸。

助力器

目前,轿车上广泛装用真空助力器作为制动助力器,利用发动机喉管处的真空度来帮助驾驶员操纵制动踏板。根据真空助力膜片的多少,真空助力器分为单膜片式和串联膜片式两种。

2. 当制动踏板踩下时,起初气室膜片座8固定不动,来自踏板机构的操纵力推动控制阀推杆12和控制阀柱塞18相对于膜片座8前移。当柱塞与橡胶反作用盘7之间的间隙消除后,操纵力便经反作用盘7传给制动主缸推杆2(如下图)。同时,橡胶阀门9随同控制阀柱塞前移,直到与膜片座8上的真空阀座接触为止。此时,伺服气室前后腔隔绝。

3. 控制阀推杆12继续推动控制阀柱塞前移,到其上的空气阀座10离开橡胶阀门9一定距离。外界空气充入伺服气室后腔(如下图),使其真空度降低。在此过程中,膜片20与阀座也不断前移,直到阀门重新与空气阀座接触为止。因此在任何一个平衡状态下,伺服气室后腔中的稳定真空度与踏板行程成递增函数关系。

气压制动

以发动机的动力驱动空气压缩机作为制动器制动的唯一能源,而驾驶员的体力仅作为控制能源的制动系统称之为气压制动系统。一般装载质量在8000kg以上的载货汽车和大客车都使用这种制动装置。

右图为一汽车气压制动系统示意图。由发动机驱动的空气压缩机(以下简称空压机)1将压缩空气经单向阀4首先输入湿储气罐6,压缩空气在湿储气罐内冷却并进行

ABS防抱

ABS是英文Anti-lockBraking System(防抱死刹车系统)的缩写。据统计,汽车突然遇到情况踩刹车时,百分之九十以上的驾驶者往往会一脚将刹车踏板踩到底来个急刹车,这时候的车子十分容易产生滑移并发生侧滑,即人们俗称的“甩尾”,这是一种非常容易造成车祸的现象。造成汽车侧滑的原因很多,例如行驶速度,地面状况,轮胎结构等都会造成侧滑,但最根本的原因是汽车在紧急制动时车轮轮胎与地面的滚动摩擦会突然变为滑动摩擦,轮胎的抓地力几乎丧失,此时此刻驾驶者尽管扭动方向盘也会无济于事。针对这种产生侧滑现象的根本原因,汽车专家就研制出车用ABS这样一套防滑制动装置。

以前消费者买车,都把有没有ABS作为一个重要指标。随着技术的发展,目前,中国绝大部分轿车已经将ABS作为标准配置。但对于ABS的认识以及如何正确使用,很多驾驶员还不是很清楚,甚至还出现了一些对ABS的误解。一些驾驶员认为ABS就是缩短制动距离的装置,装备ABS的车辆在任何路面的制动距离肯定比未装备ABS的制动距离要短,甚至有人错误地认为在冰雪路面上的制动距离能与在沥青路面上的制动距离相当;还有一些驾驶员认为只要配备了ABS,即使在雨天或冰雪路面上高速行驶,也不会出现车辆失控现象。ABS并不是如有些人所想的那样,大大提高汽车物理性能的极限。严格来说,ABS的功能主要在物理极限的性能内,保证制动时车辆本身的操纵性及稳定性。同时,在加速的时候,也能防止轮胎的纯滑移,提高了加速性能和操作稳定性。

故障排除

1.故障现象

制动踏板行程过大,制动作用迟缓,制动效能很低甚至丧失,制动距离增长。

2.故障原因

1)制动油压力不足。

2)制动系统内有空气

3)制动踏板自由行程或制动器间隙过大,制动蹄摩擦片接触不良,磨损严重或有油污

4)制动主缸、轮缸活塞和缸管磨损或拉伤,皮碗老化损坏

3.故障的判断与排除

1)连续踩下制动踏板,如踏板逐渐升高且有弹性感觉,但稍停一会后再踩踏板时仍然很低,即为制动系统内有空气,这时应对制动系统进行排气

2)一脚制动不灵,但连续踩几次踏板时制动效果很好,一般为制动踏板自由行程过大或制动间隙过大。应调整踏板自由行程,而后检查制动器间隙,必要时进行制动器解体修理

3)踩下制动踏板时,不软弱不沉,但就是制动效果不良,这一现象为车轮制动器故障,如制动蹄片有油或接触不良、摩擦片老化、磨损、制动鼓磨损不均。应对制动技术状况进行检查,必要时进行调整和修复。

发展趋势

已经普遍应用的液压制动现在已经是非常成熟的技术,随着人们对制动性能要求的提高,防抱死制动系统、驱动防滑控制系统、电子稳定性控制程序、主动避撞技术等功能逐渐融人到制动系统当中,需要在制动系统上添加很多附加装置来实现这些功能,这就使得制动系统结构复杂化,增加了液压回路泄漏的可能以及装配、维修的难度,制动系统要求结构更加简洁,功能更加全面和可靠,制动系统的管理也成为必须要面对的问题,电子技术的应用是大势所趋。

从制动系统的供能装置、控制装置、传动装置、制动器4个组成部分的发展历程来看,都不同程度地实现了电子化。人作为控制能源,启动制动系统,发出制动企图;制动能源来自储存在蓄电池或其它供能装置;采用全新的电子制动器和集中控制的电子控制单元(ECU)进行制动系统的整体控制,每个制动器有各自的控制单元。机械连接逐渐减少,制动踏板和制动器之间动力传递分离开来,取而代之的是电线连接,电线传递能量,数据线传递信号,所以这种制动又叫做线控制动。这是自从ABS在汽车上得到广泛应用以来制动系统又一次飞跃式发展。

电液复合制动系统是从传统制动向电子制动的一种有效的过渡方案,采用液压制动和电制动两种制动系统。这种制动系统既应用了传统的液压制动系统以保证足够的制动效能和安全性,又利用再生制动电机回收制动能量和提供制动力矩,提高汽车的燃料经济性,同时降低排放,减少污染。但是由于两套制动系统同时存在,结构复杂、成本偏高。结构的复杂性也增加了系统失效和出现故障的可能性,维护和保养难度增加。

常见故障

一、制动效能不良

现象:汽车行驶中制动时,制动减速度小,制动距离长。

原因:1.总泵有故障。

2.分泵有故障。

3.制动器有故障。

4.制动管路中渗入空气。

诊断: 液压制动系统产生制动效能不良的原因,一般可根据制动踏板行程(俗称高、低)、踏制动踏板时的软硬感觉、踏下制动踏板后的稳定性以及边疆多脚制动时踏板增高度来判断。

1.一般制动时踏板高度太低、制动效能不良。如连续两脚或几脚制动,踏板高度随这增高且制动效能好转,说明制动鼓与磨擦片或总泵活塞与推杆的间隙过大。

2. 维持制动时,踏板的高度若缓慢或迅速下降,说明制动管路某处破裂、接头密闭不良或分泵皮碗密封不良,其回位弹簧过软或折断,或总泵皮碗、皮圈密封不良,回油阀及出油阀不良。可首先踏下制动踏板,观察有无制动液渗漏部位。若外部正常,则应检查分泵或总泵故障。

3. 连续几脚制动时,踏板高度仍过低,且在第二脚制动后,感到总泵活塞未回位,踏下制动踏板即有总泵推杆与活塞碰击响声,是总泵皮碗破裂或其连续几脚,回位弹簧太软。

4. 连续几脚制动时踏板高度稍有增高,并有弹性感,说明制动管路中渗入了空气。

5. 连续几脚,踏板均被踏到底,并感到踏板毫无反力,说明总泵储液室内制动液严重亏损。

6. 连续几脚制动时,踏板高度低而软,是总进油孔中储液室螺塞通气孔堵塞。

7. 一脚或两脚制动时,踏板高度适当,但太硬制动效能不良。应检查各轮磨擦片与鼓的间隙是否太小中高速不当。若间隙正常,则检查鼓壁与磨擦片表面状况。如正常,再检查制动蹄弹簧是否过硬,总泵或分泵皮碗是否发胀,活塞与缸壁配合是否松旷。如均正常,则应进而检查制动软管是否老化不畅通。

二、制动突然失灵

现象:汽车在行驶中,一脚或连续几脚制动,制动踏板均被踏到底,制动突然失灵。

原因: 1.总泵内无制动液。

2.总泵皮碗破损或踏翻。

3.分泵皮碗破损或踏翻。

4.制动管路严重破裂或接头脱节。

诊断: 发生制动失灵的故障,应立即停车检查。首先观察有无泄漏制动液处。如制动总泵推杆防尘套处制动液处。如制动总泵推杆防尘套处制动液漏流严重,多属总泵皮碗踏翻或严惩损坏。如某车轮制动鼓边缘有大量制动液,说明该轮分泵皮碗压翻或严重损坏。管路渗漏制动液一般明显可见。若无渗漏制动液现象,则应检查总泵储液室内制动液是否充足。

三、制动发咬

现象:踏下制动踏板时感到既高又硬或没有自由行程,汽车起步困难或行驶费力。

原因: 1.制动踏板没有自由行程或其回位弹簧脱落、折断或过软。

2.踏板轴锈滞加位困难。

3.总泵皮碗、皮圈发胀或活塞变形或被污物卡住。

4.总泵活塞回位弹簧过软、折断,皮碗发胀堵住回油孔或回油孔被污物堵塞。

5.制动蹄磨擦片与制动鼓间隙过小。

6.制动蹄回位弹簧过软、折断。

7.制动蹄在支承销上下能自由转动。

8.分泵皮碗胀大、活塞变形或有污物粘住。

⒐制动管凹瘪、堵塞,使回油不畅。

10.制动液太脏,粘度太大,使回油困难。

诊断: 放松制动踏

板后,全部或个别车轮仍有制动作用,即表明制动发咬。行车中出现制动发咬,若各轮制动鼓均过热,表明总泵有故障。若个别制动鼓过热,则属于该轮制动器工作不良。

若故障在总泵时,应先检查制动踏板自由行程。若无自由行程,一般为总泵推杆与活塞的间隙过小或没有间隙。若自由行程正常,可拆下总泵储液室螺塞,踏抬制动踏板,观察回油情况。如不回油,为回油孔堵塞。如回油缓慢,可检查制动液是否太脏、粘度太大。如制动液清纯,则总泵皮碗、皮圈可能发胀或其回位弹簧过软,应分解总泵检查。

若故障在个别车轮制动器发咬,可架起该车轮,旋松分泵放气螺钉,如制动液随之急速喷出且车轮即刻转动自如,说明该轮制动管路堵塞,分泵未能回油。如转动该轮仍发咬,可检查制动蹄磨擦片与制动鼓间隙是否太小。若上述均正常,则应检查分泵活蹇以碗及制动蹭回位弹簧的情况。

四、制动跑偏(单边)

现象:汽车制动时,向一边偏斜。

原因: 1.两前轮制动鼓与磨擦片的间隙不一,两前轮磨擦片的接触面积相差太大,两前轮磨片的质量不同,两前轮制动鼓内径相差过多,两前轮制动蹄回位弹簧弹力不等。

2.前轮某侧分泵活塞与缸筒摩擦过甚,某侧前轮分泵有空气,软管老化或分泵皮碗不良或前轮某侧制动鼓失圆,两前轮胎气压不一致,某侧前轮磨擦片油污、水湿、硬化、铆钉外露。

3.两前轮制动蹄支承销偏心套磨损程度不一。

4.两后轮有上述前三条故障的。

5.车架变形、前轴移位、前束不合要求、转向机构松旷及两前钢板弹簧弹力不等。

诊断: 检查时先通过路试制动,根据轮胎拖印查明制动效能不良的车轮予以检修。拖印短或没有拖印的车轮即为制动效能不良。可先检视该轮制动管路是否漏油,轮

胎气压是否充足。若正常,可高速磨擦片与制动鼓间隙。如仍无效,可查分泵是否渗入空气。若无空气渗入,即拆下制动鼓,按原因逐一检查制动器各部件。如也正常,说明故障不在制动系。应检查车架或前轴的技术状况及转向机构情况。如有制动试验台检查更为方便,看哪个车轮制动力小,即为不良的车轮。

故障现象

沃尔沃轿车行程3万公里,制动系统发生故障,轻度制动时,忽左忽右跑偏;继续使用,制动失效。

故障检修:检查制动踏板高度及踏板力均符合技术要求。用真空表测量真空助力泵真空度数值也达标。为确定真空泵和制动主缸压力是否正常,在轮缸处接表测量,结果显示:左右差值为零,而且启动真空助力与不启动真空助力轮缸压力差值减半(100Bar--50Bar),且解除制动后,四轮转动灵活,说明进油量和回油量是正常的。拆下摩擦块测量厚度均为10mm左右。表面上,该车制动系统一切正常,但继续检查发现,制动衬块和盘的表面都非常光滑,更换摩擦块和制动盘后,制动正常。

故障分析:摩擦打滑的原因是什么呢?

1、摩擦块材料变质。如:车辆在下山过程中,长时间或频繁地使用制动,摩擦块与制动盘滑动摩擦而产生高温,高温下材料中的有机聚合物发生分解。汽车维修养护网

2、制动盘一般为钢制,虽然有一定的金属硬度,但高温不会氧化,不仅硬度降低,而且冷却过快还会变形,造成制动盘快速磨损,盘的表面粗糙度降低,并产生很深的沟槽,即使更换新的摩擦片制动也不会好转,而且变形严重的情况下造成车轮动不平衡,车身抖动。

3、摩擦打滑情况下使用制动,温度会越来越高,势必导致制动分泵温度增高,橡胶件老化,这些都是影响制动的不良因素。

因此,对于车辆的液压制动系统,除了进行例行检查之外,还应特别注意摩擦材料的表面粗糙度,它对保证制动效果是非常重要的。

参考资料